Materials Science and Engineering
Head: D.E. Clark
Jack E. Cowling Professor: D.D. Viehland
Professors: D.E. Clark, D. Farkas, R.W. Hendricks, G-Q. Lu1, and W.T. Reynolds Jr.
Associate Professors: A.O. Aning, L.V. Asryan, S.G. Corcoran, A.P. Druschitz, E.J. Foster, L.J. Guido1, P.K. Lu, M. Murayama, G.R. Pickrell, and A.R. Whittington2
Assistant Professors: C. Hin3
Associate Professor of Practice: S. McGinnis and T.W. Staley
Research Associate Professors: J-F. Li and C.T.A. Suchicital
Instructors: C.B. Burgoyne4
Professors Emeritus: J.J. Brown Jr., R.O. Claus, N.E. Dowling, G.V. Gibbs, D.P.H. Hasselman, and C.W. Spencer
Adjunct Faculty: J.T. Abiade, T.W. Chan, O. Delaire, J.L. Hunter, M.M. Julian, S.L. Kampe, M.J. Kelley, K.V. Logan, N. Manjooran, and T.K. Ooi
Affiliated Faculty5: R.C. Batraa, M.J. Bortnerj, S.W. Casea, R.V. Davalose, C. Frazierh, A. Goldsteinj, J.R. Heflinb, H. Marandc, R. Mirzaeifarg, R.B. Moorec, K. Ngoi, C.B. Williamsg, and R.H. Yoond
1 Joint appointment with Electrical and Computer Engineering
2 Joint appointment with Chemical Engineering
3 Joint appointment with Mechanical Engineering
4 Joint appointment with Biomedical Engineering and Mechanics
5 Faculty with regular appointments in other departments: (a) Biomedical Engineering and Mechanics; (b) Physics; (c) Chemistry; (d) Mining and Minerals Engineering; (e) Institute for Critical Technology and Applied Science; (f) Nanoscale Characterization and Fabrication Laboratory; (g) Mechanical Engineering; (h)Sustainable Biomaterials; (i) Electrical and Computer Engineering; (j) Chemical Engineering
Web: www.mse.vt.edu
E-mail: undergrad@mse.vt.edu
Overview
Materials engineers and scientists study the structure and properties of engineering materials on scales ranging from the atomic through the microscopic to the macroscopic. These materials include ceramics, metals, polymers, composites, biomaterials, nanomaterials, semiconductors, and electronic, magnetic, and photonic materials. Materials engineers develop new materials, improve traditional materials, and manufacture materials economically through synthesis, processing, and fabrication. They seek to understand physical and chemical phenomena in material structures and to measure and characterize materials properties of all kinds including mechanical, electrical, optical, magnetic, thermal, and chemical. They predict and evaluate the performance of materials as structural or functional elements in engineering systems and structures. They assist engineers in other disciplines and architects in selecting optimal materials for various applications.
Significant opportunities exist for graduates in the aerospace, automobile, transportation, medical, microelectronics, telecommunications, chemical, petroleum, energy storage, power generation, and energy conservation industries, as well as within the basic industries producing materials--for example, the copper, aluminum, steel, ceramics, glass, and polymer industries. Opportunities also exist in government-operated engineering centers and research laboratories. Graduates work in entry level engineering, manufacturing, materials selection and design, quality assurance and control, research and development, technical consulting, management, and sales and marketing. Graduates have an excellent background for post-graduate studies in science, engineering, medicine, law, and business.
Program Educational Objectives and Student Outcomes
Educational Objectives
The goal of the BS degree program in MSE is to provide the educational foundation that enables alumni to pursue their personal career objectives. Historically, the majority of our alumni become valued members of industrial and/or research teams within the field of materials science or related technical disciplines while a smaller percentage pursue graduate education or other personal career objectives.
The specific objectives for the BS degree program in MSE are to produce alumni who are:
- effective communicators with written, oral, and visual media:
- able to apply critical thinking skills to engineering and research problems: and
- effective learners able to apply new technical tools, techniques, and knowledge specific to their field of employment or graduate studies.
Student Outcomes
Upon graduation, students completing the B.S. degree program in MSE will be able to:
General Outcomes
(A) apply knowledge of mathematics, science, and engineering
(B) design and conduct experiments, as well as analyze and interpret data
(C) design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, societal, global, political, ethical, health and safety, manufacturability, and sustainability
(D) function on multidisciplinary teams while maintaining independent thought and expression
(E) identify, formulate, and solve engineering problems
(F) understand professional and ethical responsibility
(G) communicate effectively
(H) understand the impact of engineering solutions in a global economic, environmental, and societal context
(I) recognize the need for, and to engage in, lifelong learning
(J) apply knowledge of contemporary issues
(K) use the techniques, skills, and modern engineering tools necessary for engineering practice
Materials Specific Outcomes
(L) apply advanced science (such as chemistry and physics) and engineering principles to materials systems/problems
(M) understand the scientific and engineering principles underlying the four major elements of the field: structure, properties, processing, and performance
(N) apply and integrate knowledge from each of the above four elements of the field to solve materials selection and design problems
(O) utilize experimental, statistical, and computational methods consistent with the program educational objectives.
Curriculum
Students typically enter the MSE Department following completion of their first year studies within the College of Engineering, as administered by the Department of Engineering Education (EngE); a description of required first year coursework can be found within the EngE section of this catalog.
In addition to foundation courses in MSE, students tailor an individualized program of elective study. Fifteen credits of technical electives will be selected to emphasize certain subdisciplines of MSE (e.g., metals, ceramics, polymers, electronic materials, composites, biomaterials, nanomaterials, etc.) or to prepare for a career in certain application areas (e.g., manufacturing, aerospace, automotive, information technology, microelectronics, etc.). Course-work totals 131 credit hours as detailed on the BS in MSE checksheet which can be found at http://www.registrar.vt.edu/graduation/checksheets/index.html. Students expecting to graduate beyond the displayed checksheet years should use the last projected term until the checksheet for that calendar year becomes available.
The undergraduate curriculum contains a nationally recognized integrated program of instruction in engineering communication including writing, public speaking, proposal preparation, reporting, research skills, critical and creative thinking, and graphical presentation. More information regarding this unique program can be found at http://www.mse.vt.edu/ecp.
The undergraduate program culminates with a two-semester team-oriented engineering design project in which the students address a significant problem in their area of special interest. MSE is unique within the College of Engineering in that they offer a more ambitious project for students enrolled in the University Honors program.
The MSE students have pursued various minors including Microelectronics, Green Engineering, Chemistry, Mathematics, Music, a foreign language, and various others.
The B.S. in MSE degree program at Virginia Tech is accredited by the Engineering Accreditation Commission of ABET, http://www.abet.org.
Educational Enhancement Opportunities
Students of MSE can optionally participate in the cooperative education program in which qualified students may alternate semesters of study with semesters of professional employment. (www.career.vt.edu/coop/coop1.html)
Honors-eligible students may participate in a formalized program of study leading to one of several university honors degrees (see www.honorscollege.vt.edu). MSE traditionally graduates several students with the degree "Bachelor of Science in Materials Science and Engineering (in Honors)", as well as some of the other Honors designations. Inquiries to MSE Advising are welcomed.
There are several department guided programs for study abroad and cultural exchanges. The MSE department has established relationships with several universities offering strong MSE programs in other countries. Programs in which the student studies abroad for one or two semesters typically have a foreign language requirement. At this time, programs are available in China, France, Germany and Switzerland. Students with interest in said programs are strongly advised to have at least two years of high school experience with the appropriate language. Short-term (3 week) summer programs are available, which do not have a language requirement. Inquiries to MSE Advising are welcomed.
Undergraduate Course Descriptions (MSE)
1004: MATERIALS IN TODAYâS WORLD
An introductory course designed for the student with a basic
high school science background who wishes to understand and
learn about the exciting materials developments which are
affecting us all in todayâs world. The course will
introduce the structures and properties of metals, ceramics,
polymers (plastics), composites, and materials for
electronic and optical applications. Students will also gain
an appreciation for the processing and design limitations of
materials used in everyday applications.
(1H,1C)
2014: MATERIALS ENGINEERING TRANSITION
Supplemental coverage of introductory topics not
included in courses delivered to non-MSE majors.
Pre: 2034 or 3094 or AOE 3094.
(1H,1C)
2034: ELEMENTS OF MATERIALS ENGINEERING
This course is designed to introduce the non-MSE student to
the structures and properties of metals,
ceramics, polymers, and composites. In addition, students
will gain an understanding of the processing and design
limitations of these materials, as well as being introduced
to new classes of materials being developed to meet the ever
expanding range of material requirements. Non-MSE majors
only.
Pre: CHEM 1035.
Co: PHYS 2305.
(3H,3C)
2044: FUNDAMENTALS OF MATERIALS ENGINEERING
This course is designed to introduce the MSE major to the
structures and properties of metals, ceramics, polymers,
composites, and electronic materials. Students will also
gain an understanding of the processing and design
limitations of materials. Topics fundamental to the further
study of materials, such as crystal structures, phase
diagrams, and materials design and processing will be
emphasized as foundations for future MSE courses.
Pre: CHEM 1035.
Co: PHYS 2305.
(4H,4C)
2054: FUNDAMENTALS OF MATERIALS SCIENCE
Introduces MSE majors to fundamental underlying concepts
governing phase equilibrium, microstructure, electronic
properties of materials, and transport phenomena as a
foundation to understanding materials behavior and
processing.
Pre: 2044.
(3H,3C)
2114: MATH PROGRAMMING MSE I
Basic computational and graphical functions in mathematics
oriented programming languages using data and engineering
examples from the field of Materials Science. Students apply
general methods to problems of their choice through mini-
projects.
Pre: 2044.
(1H,1C)
2884: MATERIALS ENGINEERING PROFESSIONAL DEVELOPMENT I
Library engineering research skills, technical computer
graphics, basic engineering workplace communication
skills, basic engineering teamwork skills, introduction to
engineering ethics, resumes and letters of introduction,
gender issues in the workplace, professional poster
presentations, and engineering public speaking.
Pre: MSE major, sophomore status.
(3L,1C)
2974: INDEPENDENT STUDY
Variable credit course.
2974H: INDEPENDENT STUDY
Variable credit course.
2984: SPECIAL STUDY
Variable credit course.
2994: UNDERGRADUATE RESEARCH
Variable credit course.
2994H: UNDERGRADUATE RESEARCH
Variable credit course.
3044: TRANSPORT PHENOMENA IN MSE
Mass transport (continuum and atomistic diffusion),
heat transport and fluid flow (momentum transport).
Analytical and computer based methods for solving transport
problems.
Pre: 2044, MATH 2214.
(3H,3C)
3054 (ESM 3054): MECHANICAL BEHAVIOR OF MATERIALS
Mechanical properties and behavior of engineering materials
subjected to static, dynamic, creep, and fatigue loads under
environments and stress states typical of service
conditions; biaxial theories of failure; behavior of cracked
bodies; microstructure-property relationships and design
methodologies for homogeneous and composite materials.
Pre: ESM 2204, (MSE 2034 or MSE 2044 or MSE 3094 or AOE 3094 or CEE 3684).
(3H,3C)
3064 (ESM 3064): MECHANICAL BEHAVIOR OF MATERIALS LABORATORY
Laboratory experiments on behavior and mechanical
properties of solid materials. Tension, compression,
bending, hardness, nano-indentation, and impact tests;
behavior of cracked bodies; fatigue and crack growth tests;
creep deformation; microstructure-property relationships;
laboratory equipment, instrumentation, and computers.
Co: 3054.
(3L,1C)
3094 (AOE 3094): MATERIALS & MANUFACTURING FOR AERO & OCEAN ENGINEERS
This course introduces the student of Aerospace and/or
Ocean Engineering to the fundamental properties of
materials typically required for structural design. The
performance characteristics of metals, ceramics, polymers,
and composites are presented and contrasted. Foundation
principles underlying materials manufacturing are also
presented with the goal of providing an understanding of
how processing affects material properties and
performance. Must have a C- or better
in pre-requisite CHEM 1035. Non-MSE majors only.
Pre: CHEM 1035.
Co: ESM 2204, PHYS 2305.
(3H,3C)
3104 (GEOS 3504): MINERALOGY
Principles of modern mineralogy, crystal chemistry, and
crystallography, with emphasis on mineral atomic structure
and physical property relationships, mineralogy in the
context of geology, geochemistry, environmental science and
geophysics, phase equilibria, mineral associations, and
mineral identification, and industrial applications of
minerals. There are three required field trips during
the semester.
Pre: (MATH 1016 or MATH 1025), CHEM 1036.
(2H,3L,3C)
3114: MATHEMATICS PROGRAMMING IN MATERIALS SCIENCE II
Advanced computational and graphical methods in mathematics
oriented programming languages. Students develop programs
that solve and/or provide visualizations of solutions to
materials science and engineering problems.
Pre: 2114.
(1H,1C)
3134: CRYSTALLOGRAPHY AND CRYSTAL STRUCTURES
Provides a comprehensive foundation in crystallography
including lattices, point groups, space groups, reciprocal
lattices, properties of x-rays, and electron density maps,
all leading to a formal description of structures and an
interpretation of the published crystallographic data.
Pre: 2044.
(3H,3C)
3204: FUNDAMENTALS OF ELECTRONIC MATERIALS
Introduction to the electrical, magnetic, and optical
properties of solid-state materials. Development of
atomic scale models for physical phenomena that are
observable at the macroscopic scale. Connection is made
between basic materials properties and the operational
characteristics of selected solid-state devices.
Pre: 2054, PHYS 2306.
(3H,3C)
3304: PHYSICAL METALLURGY
Deformation of crystalline solids and its relationship to
crystal structure and crystal defects: crystal structures of
metals, dislocations and plastic deformation, vacancies,
recovery, recrystallization, grain growth, deformation
twinning and martensite.
Pre: 2044.
(3H,3C)
3314: MATERIALS LABORATORY I
Sample preparation for materials characterization techniques
including various types of microscopy, spectroscopy,
diffraction, and hardness testing. Instruction in the use
of heat treating equipment and polishing and chemical
etching procedures.
Pre: 2044.
(3L,1C)
3324: ELEMENTARY METAL CASTING LABORATORY
Introduction to metal casting processes; gating, risering,
molding and puring. Hands-on experience. Emphasis on
safe foundry practices. Oral and written reports are
required.
Pre: (2034 or 2044), ISE 2214.
Co: 3354.
(3L,1C)
3334: TEST METHODS FOR FOUNDRY LABORATORIES
The properties of foundry sand, molten metal and castings
are measured using standard laboratory test procedures.
Safe foundry practices are emphasized. Oral and
written reports are required.
Pre: (2034 or 2044), ISE 2214.
Co: 3354.
(1H,2L,2C)
3344: GOVERNMENT REGULATION OF THE METAL CASTING INDUSTRY
Introduction to the role of federal, state, and local
regulation of the metal casting industry. Implementation
of OSHA, EPA, and DEQ regulations in an inherently
dangerous industry. Emphasis is placed on the
implementation of these regulations in a University
environment as implemented in the VT-FIRE facility.
Visits to VT-FIRE and other local production foundries
are included. Oral and written reports required.
Pre: (2034 or 2044), ISE 2214.
(3H,3C)
3354: FOUNDRY SAFETY
Provides comprehensive training in foundry safety procedures
and policies. (May register multiple times). Co: 3324 or
3334 or 4324.
Pass/Fail only.
Pre: (2034 or 2044), ISE 2214.
(2H,1C)
3884: MATERIALS ENGINEERING PROFESSIONAL DEVELOPMENT II
Public speaking and workplace communications for materials
engineers, business writing for the engineering workplace,
teamwork skills, engineering ethics, collaborative writing,
engineering management skills, and gender issues in the
workplace. Extends the basic treatment of these topics
given in MSE 2884. Pre: MSE major, junior status.
Pre: 2884.
(3L,1C)
3954: STUDY ABROAD
Variable credit course.
4034: THERMODYNAMICS OF MATERIALS SYSTEMS
Topics in thermodynamics on the solution of materials
selection and design related problems such as materials
stability at high temperatures and in corrosive chemical
environments. Thermodynamic principles important in
controlling equilibrium in single component systems and
multicomponent solid solutions and in establishing the
thermodynamic driving force in kinetic processes which are
important in materials processing unit operations.
Estimation of thermodynamic properties and equilibrium
calculations in multicomponent and multiphase systems.
Pre: 2044.
Co: CHEM 1036.
(3H,3C)
4044: POWDER PROCESSING
Processing methods associated with powder synthesis,
characterization, colloidal processing, and forming of
powder compacts. Theory of solid state and liquid phase
sintering.
Pre: 3044.
(3H,3C)
4055-4056: MATERIALS SELECTION AND DESIGN I AND II
4055: Selection of materials for engineering systems,
based on constitutive analyses of functional requirements
and material properties. 4056: The role and implications of
processing on material selection.
Pre: 3044, 3054, (3204, 3304) or (3204, 4414) or (3204, 4554) or (3304, 4414) or (330
4, 4554) or (4414, 4554) for 4055; 4055 for 4056.
(3H,3C)
4075-4076: SENIOR DESIGN LABORATORY
A capstone design course centered around an open-ended,
faculty-advised senior project involving the design of a
process, material, or a technique for solving a
technological problem. Senior standing in MSE required.
Pre: 4644 for 4075; 4075 for 4076.
Co: 4085, 4055 for 4075; 4086 for 4076.
4075: (3L,1C) 4076: (6L,2C)
4085-4086: SENIOR DESIGN RECITATION
Capstone course run in parallel with faculty-advised
Senior Project Laboratory (MSE 4075-4076). Topics in
engineering professional practice, project planning, and
reporting. Preparation of proposals, interim reports,
final project reports, and discussion of the environmental,
social, and economic impacts of engineering. Instruction in
design theory, ethics, continuous learning, and global
issues. Senior Standing in MSE. Co: 4075 or 4095H for
4085. 4076 or 4096H for 4086.
Pre: 3884 for 4085; 4085 for 4086.
4085: (2H,2C) 4086: (1H,1C)
4095H-4096H: HONORS SENIOR DESIGN-LABORATORY
Two-semester MSE capstone design course
centered around an open-ended, faculty-advised senior
honors project involving the design of a process, material,
or a technique for solving a technological problem.
Outcomes and work effort are consistent with that expected
of honors students. MSE 4095H: Literature search, planning
and proof-of-concept studies of assigned project. Individual
preparation and presentation of an original senior honors
thesis related to a team project in which the students also
participate. Presentation of detailed project plan to
faculty. MSE 4096H: Execution of proposed project, analysis
of results and preparation of journal-quality presentation
of results. Oral presentation of results to MSE faculty and
students. Enrollment in University Honors and senior
standing in MSE required.
Pre: 4644 for 4095H; UH 4095H, MSE 4095 for 4096H.
Co: 4085, 4055 for 4095H; 4086, 4086 for 4096H.
(9L,3C)
4164: PRINCIPLES OF MATERIALS CORROSION
Introduction to the scientific principles of materials
corrosion and corrosion protection. Topics include:
thermodynamics of materials corrosion, including potential-
PH (Pourbaix) diagrams, kinetics of corrosion reactions and
mixed potential theory, types of corrosion (uniform,
galvanic, crevice, pitting, fatigue, stress corrosion
cracking, intergranular, and hydrogen embrittlement),
material/environmental factors that promote or prevent the
various types of corrosion, and methods and techniques of
corrosion testing.
Co: 4034.
(3H,3C)
4234 (ECE 4234): SEMICONDUCTOR PROCESSING
Manufacturing practices used in silicon integrated circuit
fabrication and the underlying scientific basis for these
process technologies. Physical models are developed to
explain basic fabrication steps, such as substrate growth,
thermal oxidation, dopant diffusion, ion implantation, thin
film deposition, etching, and lithography. The overall CMOS
integrated circuit process flow is described within the
context of these physical models.
Pre: ECE 2204 or ECE 3054.
(3H,3C)
4304: METALS AND ALLOYS
This course covers the production, properties and uses of
commercially important metals and alloys. The influence of
structure, chemistry, and processing upon the properties of
metals is emphasized. Alloy selection is discussed.
Mechanical, electrical, thermal and chemical characteristics
of ferrous and nonferrous alloys are studied.
Pre: 2034 or 2044.
(3H,3C)
4305,4306: PHYSICAL METALLURGY AND MODELING OF METAL CASTING
4305: Casting processes; solidification and its
influences on the structure and chemistry of
castings; role of fluid flow and heat transfer in
mold design; origin and control of casting
defects. 4306: Design, layout, and modeling
of metal components cast from aluminum,
bronze, iron and steel; design of metal
running systems; modeling of solidification
process. Co: 3044 or ME 3304 for 4306.
Pre: 3304 for 4305; (2034 or 2044), 3324 for 4306.
(3H,3C)
4324: ADVANCED METAL CASTING LABORATORY
Advanced metal casting processes; no-bake sand molds;
investment casting; rapid prototyping; melting and casting
of aluminum, bronze, iron and steel. Casting finishing
including shot and sand blasting. Hands-on experience.
Emphasis on safe foundry practices. Oral and written
reports are required.
Pre: 3324.
Co: 3354.
(1H,3L,2C)
4334: APPLIED MATERIALS ANALYSIS
Fundamental materials theory applied to structure-property
relationships in materials science and engineering through
basic characterization techniques. Demonstrations, lab
exercises, and practical application of modern
characterization techniques such as Scanning and
Transmission Electron Microscopy (SEM, TEM), Focused Ion
Beam (FIB), and Atomic Force Microscopy (AFM).
Pre: 2044, (3314 or 4424).
(2H,3L,3C)
4384: NUCLEAR MATERIALS
An introduction to materials for nuclear applications with
emphasis on fission reactors. Fundamental radiation effects
on materials; material properties relevant to structural,
moderator, reflector, blanket, coolant, control shielding
and safety systems; processes such as nuclear fuel
cycles, fuel enrichment and reprocessing; and related
structural systems.
Pre: (3044 or ME 3304), (MSE 3054 or ESM 3054 or ME 3614).
(3H,3C)
4414: PHYSICAL CERAMICS
Study of the relationships between the physical properties
(thermal, optical, mechanical, electrical and magnetic)
and the structure and composition of ceramics at the
atomic and microscopic level as affected by processing
and service environment. Emphasis will be placed on
application and design using structural ceramics.
Pre: 2044.
(3H,3C)
4424: MATERIALS LABORATORY II
Processing and characterization of materials; exploration of
the influence of processing parameters on physical and
mechanical properties. Emphasis on material synthesis.
Pre: 2044.
(3L,1C)
4544 (CHEM 4074): LABORATORY IN POLYMER SCIENCE
Experimental techniques used in the synthesis of various
linear polymers, copolymers, and crosslinked networks.
Determination of polymer molecular weights and molecular
weight distribution. Methods used in the thermal,
mechanical, and morphological characterization of polymeric
systems.
Pre: CHEM 3616, CHEM 4534.
(1H,3L,2C)
4554: POLYMER ENGINEERING
This course is designed to introduce the student to
polymers from the MSE perspective. The basics of polymer
syntheses and polymerization will be outlined. The
relationship between processing, structure, and properties
will be presented with respect to the performance and design
requirements of typical polymer applications.
Pre: 2044.
(3H,3C)
4574: BIOMATERIALS
Materials for biomedical applications. Basic material
types and properties, functional uses of materials in
medical applications, and tissue response mechanisms.
Integrated design issues of multicomponent material design
in prosthetic devices for hard and soft tissues, orthopedics
, cardiovascular, and drug delivery applications.
Pre: 3054 or ESM 3054.
(3H,3C)
4584: BIOMIMETIC MATERIALS
Introduction to structure property relationships in
biological materials such as wood, bone, shells, spider
silk, connective tissue, blood vessels and jellyfish.
Proteins and polysaccharides, biosynthesis and assembly,
biomineralization, hierarchical organization. Introduction
to tissue engineering and regenerative medicine. Life
cycle, environmental aspects of biofabrication.
Pre: (2034 or 2044), (CHEM 1036 or BIOL 1106).
(3H,3C)
4604: COMPOSITE MATERIALS
The application of the fundamental concepts of mechanics,
elasticity, and plasticity to multiphase and composite
materials. Constitutive equations for the mechanical and
physical properties of metal, ceramic, and polymeric matrix
composites. The role of processing and microstructure on
properties.
Pre: (2034 or 2044), ESM 2204.
(3H,3C)
4614: NANOMATERIALS
Synthesis methods of 0D nanoparticles, 1D
nanotubes/nanowires/nanorods, 2D nanoribbons
and nanofilms, and special nano-features on supports.
Bottom-up and top-down approaches. Methods of
characterization for nanomaterials. Processing of
nanospecies into higher order dimensions; conventional
processing techniques; techniques developed solely for
nanomaterials. Chemical, physical, mechanical, and
electrical properties of nanomaterials and applications of
nanomaterials.
Pre: 4034.
(3H,3C)
4644: MATERIALS OPTIMIZATION THROUGH DESIGNED EXPERIMENTS
Methods of analysis of variation in materials systems,
manufacturing or R&D through the use of statistical
methods including experimental design techniques.
Instructional examples related to Materials Science and
Engineering.
Pre: (3314 or 4424).
(3H,3C)
4974: INDEPENDENT STUDY
Variable credit course.
4974H: INDEPENDENT STUDY
Variable credit course.
4984: SPECIAL STUDY
Variable credit course.
4994: UNDERGRADUATE RESEARCH
Variable credit course.
4994H: UNDERGRADUATE RESEARCH
Variable credit course.