Biological Systems Engineering
Head: D. Edwards
Professors: J. R. Barone, B. L. Benham, Z. M. Easton, R. D. Grisso, W. C. Hession, S. Mostaghimi, D.J. Sample, M. L. Wolfe, and C. Zhang
Associate Professors: J. Arogo Ogejo, L.-A. H. Krometis, D. T. Scott, R.S. Senger, V. R. Sridhar, and T. M. Thompson
Assistant Professors: J. Chen, J. A. Czuba, J. E. Shortridge, and R. C. Wright
Instructor: S. C. Mariger
Web: www.bse.vt.edu
Overview
Biological Systems Engineering connects biology and engineering to solve complex, critical problems in the areas of sustainability, environmental stewardship, and human health. The Bachelor of Science in Biological Systems Engineering is offered through the College of Engineering and is accredited by the Engineering Accreditation Commission of ABET, www.abet.org. Graduates are prepared to develop engineering solutions that safeguard our land and water resources, detect and prevent human diseases, and produce food, pharmaceuticals, and polymers.
With 33 credits devoted to technical electives, our flexible curriculum provides students the opportunity to specialize in multiple career paths, including biotechnology, watershed science, biopharmaceuticals, environmental health, and food engineering. Students in each of these specialties are provided with a common foundation of biology and chemistry to expand core skills in math, physics, and engineering design principles. Biological Systems Engineering has relatively small class sizes that promote meaningful student-faculty interaction. Departmental courses include significant "hands-on" components and an emphasis on professional skills such as communication, teamwork, and the creative process of engineering design. The department offers over 20 endowed scholarships to students enrolled in Biological Systems Engineering, and students are also eligible for College of Engineering and other Virginia Tech scholarships.
The BSE program prepares graduates to accomplish the following objectives in their careers within a few years after graduation:
- Design solutions to problems at the intersection of biology and engineering at scales ranging from molecular to global.
- Address societal and ecological needs in food and fiber production and processing, biotechnology, pharmaceuticals, renewable energy, environmental protection, and sustainable development.
- Collaborate effectively as members of multidisciplinary teams and communicate effectively across a diversity of audiences.
- Advance professionally through mentoring and life-long learning.
When combined with career-enhancing opportunities such as Cooperative Education, internships, undergraduate research and study abroad, this educational program enables graduates to make meaningful impacts on challenges involving natural resources and biological systems. Graduates are employed in the biotechnology, pharmaceutical, energy, and food industries as well as government agencies, environmental consulting firms, and non-profit organizations. Graduates also succeed in professional schools such as medicine, dentistry, and veterinary medicine, and as graduate students in a variety of disciplines.
Degree Requirements
The graduation requirements in effect during the academic year of admission to Virginia Tech apply. When choosing the degree requirements information, always choose the year you started at Virginia Tech. Requirements for graduation are referred to via university publications as "Checksheets." The number of credit hours required for degree completion varies among curricula. Students must satisfactorily complete all requirements and university obligations for degree completion. The university reserves the right to modify requirements in a degree program.
Please visit the University Registrar's website at https://www.registrar.vt.edu/graduation-multi-brief/checksheets.html for degree requirements.
Undergraduate Course Descriptions (BSE)
2004: INTRODUCTION TO BIOLOGICAL SYSTEMS ENGINEERING Introduction to the fundamental concepts of Biological Systems Engineering, including statistics and material and energy balances, through applications in protein separation, hydrology, sediment/nutrient transport, and microbial metabolism. Engineering design process. Engineering problem-solving tools and techniques. Resolving ethical dilemmas. Development of oral and written communication skills; introduction to job searching resources; strategies for career development, and the importance of teamwork and ethics in Biological Systems Engineering. Pre: ENGE 1215 or ENGE 1414. (2H,3L,3C)
2094: INTRODUCTION TO METAL FABRICATION Introduction to metal working tools, equipment, and processes. Fundamentals of gas and arc welding. (3L,1C)
2294: ANIMAL STRUCTURES AND ENVIRONMENT Functional considerations in facilities development for production agriculture. Concepts of farmstead planning and system development emphasized. Techniques for providing production animal environment, especially for confinement facilities. Pre: (MATH 1016 or MATH 1025). (3H,3C)
2304: LANDSCAPE MEASUREMENTS AND MODELING Introduction to land surveying, computer-aided design, and drafting for land and water resources engineering. Representation of features in two and three dimensions for documentation and visualization of watershed engineering projects. Create plans, cross sections, detail drawings, and three dimensional visualizations using computer-aided design and drafting tools. Pre: (MATH 1206 or MATH 1226). (2H,3L,3C)
2484: ENGINE AND POWER TRAIN TECHNOLOGY Fundamentals of the construction and operation of current internal combustion power units. Control of power utilizing clutches, transmissions, drive shafts, and differentials. Pre: (MATH 1016 or MATH 1025). (2H,3L,3C)
2974: INDEPENDENT STUDY Variable credit course.
2984: SPECIAL STUDY Variable credit course.
2994: UNDERGRADUATE RESEARCH Variable credit course.
3134: BIOLOGICAL SYSTEMS ENGINEERING SEMINAR Critical review of technical and professional articles on current topics in Biological Systems Engineering. Development of oral presentation and technical writing skills. Contemporary ethical, professional, and global issues in Biological Systems Engineering. Pre: 2004. (2L,1C)
3144: ENGINEERING ANALYSIS FOR BIOLOGICAL SYSTEMS USING NUMERICAL METHODS Solving engineering problems related to biological systems using numerical analysis including root finding, numerical integration, differentiation, interpolation and numerical solution of ordinary differential equations. Error analysis and programming with engineering software. Course requirements may be satisfied by taking MATH 2214 prior to or concurrent with course. Co: MATH 2214. (2H,2C)
3154: THERMODYNAMICS OF BIOLOGICAL SYSTEMS Fundamental concepts, first and second laws, psychrometrics applied to plant and animal environments, introduction to Gibbs energy, and application of calorimetry to gain basic understanding of energy flow in a biological system. Course requirements may be satisfied by taking CEE 3304 or CHE 3114 or ESM 3234 or ESM 3024 or ME 3404 prior to or concurrent with course. Pre: ESM 2304, (MATH 2224 or MATH 2224H or MATH 2204 or MATH 2204H). (3H,3C)
3324: SMALL WATERSHED HYDROLOGY Precipitation, soil physics, infiltration, evapotranspiration, groundwater hydrology, overland flow, open channel flow, flow routing, hydraulic analysis. Pre: PHYS 2305. (3H,3C)
3334: NONPOINT SOURCE POLLUTION ASSESSMENT AND CONTROL Erosion prediction and control; transport and fate of sediment, nutrients, and microorganisms; design of nutrient management plans, wetlands, detention facilities and other management practices for rural and urban nonpoint source pollution control. Pre: 3324. (2H,3L,3C)
3494: ADVANCED WELDING TECHNOLOGY Techniques in welding that include gas, submerged metal arc, metal inert gas, pulsed arc, and tungsten inert gas welding. Design of welding structures, fundamentals of heat treatment, and plasma arc cutting. Consent required. (3L,1C)
3504: TRANSPORT PROCESSES IN BIOLOGICAL SYSTEMS Introduction to material and energy balances in biological systems. Fundamentals of heat and mass transfer in biological systems. One and two dimensional conduction, convection, and diffusion of thermal energy and mass. Heat and mass transfer rates, steady and unsteady state conduction, convection, diffusion; design of simple heat exchangers. Application of these topics and fluid mechanics to fluid handling, bacterial growth, plant nutrient uptake, enzymatic reactions. Pre: 3154, ESM 3024. (3H,3C)
3524: UNIT OPERATIONS IN BIOLOGICAL SYSTEMS ENGINEERING Unit operations for processing biological materials including heat exchangers, evaporation, drying, mixing, homogenization, extrusion, phase and multi-phase separation, and size reduction. Laboratory hands-on experience in various unit operations. Course requirements may be satisfied by taking BSE 3504 prior to or concurrent with course. Co: 3534, 3504. (2H,3L,3C)
3534: BIOPROCESS ENGINEERING Engineering concepts for biological conversion of raw materials to food, pharmaceuticals, fuels, and chemicals. Metabolic pathways leading to products, enzyme kinetics, cell growth kinetics, and analysis of bioreactors and fermenters. Co: 3504, (BIOL 2604 or BIOL 2604H). Pre: 3154. Co: BIOL 2604, 3504. (3H,3C)
3954 (GEOG 3954): STUDY ABROAD Variable credit course.
4125-4126: COMPREHENSIVE DESIGN PROJECT 4125: Identify and develop an engineering design project using the team approach; use of literature resources to define project objectives and approach; present project proposal in a professional written and oral manner; engineering ethics, professionalism and contemporary issues. Pre: Completion of 96 hours, overall GPA of 2.0 or better. 4126: Complete a comprehensive design project using the team approach, test approach, test prototype, and prepare and present a professional engineering design report. Pre: 3334 or 3524 for 4125; 4125 for 4126. 4125: (1H,3L,2C) 4126: (1H,6L,3C)
4204: INSTRUMENTATION FOR BIOLOGICAL SYSTEMS Introduction to instrumentation and sensors for measurement and control of biological systems. Sensor response dynamics, data acquisition, sensor selection, signal processing and signal conditioning principles. Experimental determination of velocity, pressure, strain, displacement, forces and chemical constituents. Data analysis focused on uncertainty, error and statistical concepts. Pre: PHYS 2306, ESM 3024. (2H,2L,3C)
4224: FIELD METHODS IN HYDROLOGY Site characterization: surveying, channel and floodplain mapping, land use, electronic data acquisition. Techniques for measuring surface and subsurface hydrologic processes: water flow, hydrologic conductivity, precipitation, evaporation. Sampling techniques: surface water, groundwater, and soil pore water sampling. In-situ monitoring: automatic samplers, dataloggers, water quality sondes. Laboratory analyses: good laboratory practices, selection of analytical method, calibration, quality assurance/quality control. Co: 3324 or CEE 3314 or FREC 3104 or WATR 3104. (2H,3L,3C)
4304: INTRODUCTION TO WATERSHED MODELING Fundamental modeling principles used to quantifywatershed hydrology, energy budgets,and associated ecosystem functions, such asplant dynamics and biogeochemical processes, at scales ranging from soil poresto watersheds. Code development and model integration to simulate watershed hydrologyandnutrient and sediment transport. Model calibration and performance assessment. Data discovery, acquisition, and processing of data relevant to hydrologic/watershed modeling. Pre: 3334. (2H,3L,3C)
4324: APPLIED FLUVIAL GEOMORPHOLOGY Introduction to landscape evolution. Influence of geology and climate on stream form and processes. Fundamental river mechanics and sediment transport. Stream surveying and classification. River system response to changes in hydrology and sediment supply. Interactions between ecosystems and fluvial systems. Human impacts on stream systems. Pre: 3324 or CEE 3314 or FREC 3104 or WATR 3104. (3H,3C)
4344: GEOGRAPHIC INFORMATION SYSTEMS FOR ENGINEERS Conceptual, technical, and operational aspects of geographic information systems as a tool for storage, analysis, and presentation of spatial information. Focus on engineering applications in resource management, site selection, and network analysis. Laboratory work and senior standing required. Pre: 3324 or CEE 3314 or FREC 3104 or WATR 3104. (2H,3L,3C)
4394: WATER SUPPLY AND SANITATION IN DEVELOPING COUNTRIES Social, economic and engineering principles of water supply and sanitation in developing countries as affected by climate, cultural and sociological factors, and material and financial resources. Pre: Junior or Senior standing. (3H,3C)
4524: BIOLOGICAL PROCESS PLANT DESIGN Engineering principles for design of systems for processing biological materials into primary and secondary products. Delivery, scheduling, storage requirements, economic analysis. Process control and instrumentation of bioprocessing plants. Pre: 3524. (3H,3C)
4534: BIOPROCESS ENGINEERING LAB Unit operations commonly used in processing biological materials, including filtration, heat transfer, ultrafiltration, crystallization, and protein expression by fermentation, purification by chromatography, and characterization by gel electrophoresis. Pre: 3524, 3534. (3L,1C)
4544 (CHE 4544): PROTEIN SEPARATION ENGINEERING Concepts, principles and applications of various unit operations used in protein separations. Properties of biological materials, such as cells and proteins, and their influences on process design. Design of processes for protein purification based on the impurities to be eliminated. Concepts and principles of scale-up of unit operations. Case studies in practical protein recovery and purification issues, with a focus on enhanced protein purification by genetic engineering. Protein purification process simulation and optimization using process simulation software. Pre: 3504 or CHE 3144. (3H,3C)
4554 (FREC 4554) (HORT 4554) (LAR 4554) (SPIA 4554): CREATING THE ECOLOGICAL CITY Multidisciplinary, team oriented, problem-solving approaches to creating cities that foster healthy interconnections between human and ecological systems. Analysis of problems from practical and ethical perspectives in the context of the diverse knowledge bases and values of decision-makers. Formation and utilization of integrated design teams to solve complex urban design and planning problems at a variety of scales. Senior standing. Pre: HORT 2134 or FREC 2134. (3H,3C)
4564: METABOLIC ENGINEERING Engineering concepts for analyzing, designing, and modifying metabolic pathways to convert raw materials to food, pharmaceuticals, fuels and chemicals. Cell metabolism, pathway design, bioenergetics, regulatory mechanisms, metabolic modeling, and genetic tools. Pre: 3534 or BCHM 4115 or BIOL 3774. (3H,3C)
4604: FOOD PROCESS ENGINEERING Analysis and design of food processing operations including thermal pasteurization and sterilization, freezing, extrusion, texturization, and mechanical separation. Pre: 3504, 3524. (3H,3C)
4974: INDEPENDENT STUDY Variable credit course.
4984: SPECIAL STUDY Variable credit course.
4994: UNDERGRADUATE RESEARCH Variable credit course.